

Managing strategies in an uncertain world

Session #2 of a five-step program "From awareness to action"

May 28, 2024

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

A five-step program "From awareness to action" by McKinsey

Session 3

quality climate

action plans

Developing high-

Session 1

Solving the Net-Zero equation

Explore the requirements for achieving Net-Zero emissions and understand the implications for companies Session 2

Managing strategies in an uncertain world

Learn how to develop strategic options for a lowcarbon future, set baselines, and choose the right strategic posture for your company Discover how to create high-quality climate action roadmaps and drive change in value-focused boardrooms through levers for decarbonization Session 4

Motivating leadership teams and organizations

Uncover the capabilities and motivation organizations need to navigate technological advancements, policy shifts, and investor expectations **Session 5**

Mapping the road ahead

Understand the importance of essential efforts and collaboration between public and private sectors in achieving global economic transformation

McKinsey Sustainability

Our aspiration – To be the largest private sector catalyst for decarbonization, helping clients in all industries and sectors make meaningful progress by 2030 and reach Net Zero by 2050 in line with the Paris Agreement.

McKinsey on Climate, Decarbonization and ESG

sustainability-related client engagements

>200

Data scientists, analysts, researchers and knowledge consultants

>100

publications in 2020 with ~1.5 mil views on McKinsey.com site

>20

leading industry associations we are partnering with

2030

- target year we set to reach Net Zero

Today's agenda

Importance of Net Zero in Kazakhstan Leading in Net Zero strategy building Net Zero pathway development

Sanitized version.

For more information please reach out to McKinsey

Importance of Net Zero in Kazakhstan

There is a need to address all four elements of the Energy Management Quadrilemma

Energy security: guarantee of uninterrupted energy supply while reducing volatility

- Building a sustainable and reliable energy system
- Unconstrained provision of energy to the population and the needs of the growing economy

Carbon Neutrality: reduction of greenhouse gas emissions in the energy sector

- Achieve Kazakhstan's Net Zero targets by 2060.
- Replacement of fossil fuels with renewable energy sources
- Electrification of all sectors taking into account fuel and energy risks

Availability: minimization of total energy system costs and, therefore, maintenance of affordable prices for end consumers

- · Competitiveness of industries with account of social agenda
- · Economic attractiveness for investors

Competitiveness: preservation and growth of the current level of competitiveness of key sectors of the economy

- Competitiveness of industries with account of carbon tax
- Economic attractiveness for investors (cost of capital)

A1. Kazakhstan's energy demand is expected to increase by 1.5 times by 2060

Current trajectory

B2. Under the current trajectory emissions will remain on the same level

Current trajectory

Kazakhstan is among the most GHG intensive economies per capita and to GDP ratio

Key abatement levers:

- Power mix correction by RES share increase
- Energy efficiency improvement
- Electrification

Leading in Net Zero strategy building

Across sectors, companies like you are making bold investments and commitments to sustainability

Non-exhaustive

A growing number of companies are increasingly using Science Based Targets, count of companies with Science-Based Targets Set or Committed¹

Absolute emissions Emis

Emissions intensity²

Leading industrial companies are pushing each other to pursue more and more ambitious decarbonization targets

Note: SBTI = Science based targets initiative

1. Companies "Committed" have expressed their intent to set SBTs but not finished the target setting process. Companies with "Targets Set" have developed their reduction targets, presented them to SBTI for official validation, announced the target to their stakeholders and reported company-wide emissions annually. More companies may have committed to or set decarbonization targets, but might not have submitted to SBTI. | 2. Relative to different base years | 3. Net Zero Carbon Footprint of Scope 1 and 2 | 4. Only emissions from purchased goods & services and upstream transportation per vehicle sold | 5. carbon neutral since 2007, want to achieve net zero of their own operations on a daily basis (24/7) by 2030 | 6. Net Carbon Intensity vs 2018 | 7. Not approved by SBTI

Source: Company websites, company sustainability reports, Science Based Targets Initiative, company sustainability report on scope 1-3

What we can learn from Net Zero leaders across industries...

... and what this means for your strategy

Focus of next section

You can become a Net Zero leader by setting bold aspirations now and making ...

Portfolio moves

Reorient your portfolio towards sustainability and consistent capital allocation (e.g., focus sustainable parts on growth and manage non-sustainable parts on cashflow)

Courageously divest or scale down non-sustainable parts of your portfolio and use proceeds to fund sustainability initiatives

Decarbonization of operations and end-to-end value chain Redesign your processes using core decarbonization technologies and work with suppliers and customers to decarbonize your end-to-end value chain Include sustainability and carbon prices in internal investment decisions

Green growth

Commercialize the green or "low carbon" products, working actively with front running customers, building entire sustainability **ecosystems** and using **innovative financing models**

... supported by a convincing capital markets story

Link values and value: attractive capital markets story on your Net Zero strategy (demonstrating valuation upside, setting ambitious targets including science based targets, and roadmap how to achieve them)

1. Portfolio moves - Orsted completely transformed from a fossil fuel portfolio to a renewable energy leader in just over a decade

Company Context

Danish national power company with **85% of portfolio coal driven** Started to see **opposition**

to European coal plants coupled with pressure to act on climate at 2009 COP 15

Orsted

Key success factors

Set **bold target** to diversify portfolio

Through diversification, focused on a single technology with the goal of becoming a global leader

First mover advantage through divestment of hydrocarbon assets and achievement of cost reductions in offshore wind technology

Overhauled supply chain and financing processes including developing "farm down" investment approach to access cheap project financing

2. Decarbonization of operations and end-to-end value chain can be at NPV zero cost

Full scope of decarb opportunities for US refinery

Illustrative

1. Abatement is calculated with cost in 2050

Source: McKinsey Energy Solutions (part of Catalyst Zero)

3. Green growth - there is untapped potential on green growth opportunities globally

Investable themes – addressable market size in 2025 globally (\$B)

Preliminary, not exhaustive

	\$900-\$1,000B	\$650-\$950B	\$500-\$900B	\$400-\$600B	\$400-\$500B	\$200-\$500B	\$90-100B	\$40-\$100B	\$10-\$45B	\$10-\$25B
									•	•
Sub- themes	Decarboniza- tion of power	Low carbon mobility	Circular products &	Low carbon agriculture	High efficiency	Hydrogen H ₂ electrolyzers	Bioenergy Bio-refineries	Industrial decarbonizati	CCUS Sorbents for	Carbon Markets,
Rener power gener Micro resilie Flexib energ Grid a custor energ	Renewable power generation	Electrification of packa vehicle power Sorting trains proces	Sorting and	and food supply chain Low carbon proteins Sustainable timber Tech enhancements for crop yields Crop	buildings Energy efficiency and building controls Building electrification Green building materials On-site clean	H ₂ blending materials Hydrogen mobility Project development	Biofuel innovation Waste to energy/value	on Green cement and CO ₂ negative aggregates High efficiency iron & steel production Decarbonizatio n of industrial	carbon capture CO_2 to fuel Direct air capture Novel point- source capture CO_2 pipelines and transport CO_2 capture infrastructure	offsets, financing Offset project design, development, and supply Marketplaces and exchanges Carbon credit brokers and
	Microgrids and resiliency	Next-gen batteries	Sustainable packaging							
	Flexibility and energy storage	Charging infra and energy	Sustainable fashion							
	Grid and customer energy	Fleet decarbonization	Circular products and upcycling							
	analytics Advanced solar	Shipping and port	Reverse logistics supply	preservation / waste reduction	energy			process heat Industrial	mrastructure	retailers
	PV technology	decarbonization	chain svcs	Methane inhibitors				energy efficiency		

Startups are way ahead of incumbents in exploiting the opportunities in green business.

Net Zero pathway development

Companies are making decarbonization commitments but are facing challenges to deliver on them

Poll: Net Zero strategy

Key components of decarbonization target-setting and pathway development

Detailed next

2. Baseline development: Emission baselining is done by considering sources of both Scope 1 and Scope 2 emissions

Example baselining for a plant

2. Most baseline reporting covers all greenhouse gases, as well as Scope 1 and 2 at the minimum

Most baseline reporting covers all greenhouse gases, as well as Scope 1 and 2 at the minimum

Scope 3 is typically not included in reporting or target setting, however several plan to include it in the future, particularly Category 11: Purchased Goods

1. Category 1: Purchased goods and services; Category 3: Fuel and energy-related activities; Category 9: Downstream transportation and distribution; Category 11: Use of sold products

The GHG Protocol lists 7 types of greenhouse gases: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PCFs), sulphur hexafluoride (SF6), and nitrogen trifluoride (NF3). CO2, CH4, and N2O contribute ~98% of GHG emissions (USA EPA, 2017)

Source: Company sustainability reports, company websites

3. Decarbonization levers: Building a company or assetspecific MACC can help to identify required solutions and evaluate the cost of reaching Net Zero

2030 Unconstrained Marginal Abatement Cost Curve, Scope 1+2, USD/tCO₂e

Each bar on the cost curve represents a decarbonization lever

Levers are **sorted by increasing abatement costs** for the reduction of emissions by tC02e

Abatement cost is calculated as the difference of average costs between new and replaced lever divided by the displaced emissions. It should include potential subsidies that would lower the cost of low carbon technologies

3. Each lever is assessed in terms of impact potential, technology readiness and execution complexity...

Illustrative

		(?)			$\mathbf{\times}$	
		Question	Positive validation	Initial positive validation	Negative validation	
Impact potential vs. investment cost		What will be emis- sions improvement potential?	High impact potential against investment	Medium to low potential impact against investment	Limited potential	
Technology	readiness	Is the technology already available on the market?	Commercially available	Lab-tested or pilot deployments	Early research or concept	
Execution Complexity	Physical constraints	Is the deployment possible given the space constraints?	No physical limitations	Constraints limiting large- scale deployment	Not feasible	
	Supply chain constraints	Does supply chain already exist?	Full supply chain present	Limited/developing supply chain, or potential to develop	No supply chain in place	
	Regulatory limitations	Are there any reg- ulatory limitations	No limitations expected	Possible if required criteria are met	Not possible under current regulations	
		for technology deployment?		Long term evolution of regulatory to be considered		

- Existing initiatives should be categorized based on maturity level
- For early-stage initiatives, detailed assessment of levers should be conducted
- Company positioning on every lever will be defined in structured manner to create holistic understanding of the solutions space
- Focus areas will be prioritized and signposts established for monitoring (what would need to change in order to revise prioritization)

4. Target setting: Three approaches to chart Net Zero pathways

SBTi preferred approach

Absolute reduction	Physical intensity improvement	Economic intensity improvement ²		
An absolute reduction target describes a reduction of the absolute amount of GHG emissions , e.g. "Reduce absolute GHG emissions 60% by 2025 from 2015 levels"	 A physical intensity target describes an improvement of GHG emissions relative to a specific production output, e.g. "Reduce GHG emissions 25% per kWh¹ by 2025 from 2015 levels" 	An economic intensity target describes an improvement of GHG emissions relative to the financial performance of a company, e.g. "Reduce GHG emissions 40% per unit of value added by 2020 from 2015 levels"		
Absolute targets follow the absolute contraction principle, under which all companies need to reduce their own absolute emissions at the same rate to achieve a given climate scenario, irrespective of initial emissions performance	One example is the Sectoral Decarbonization Approach or SDA, where individual companies targets are based on their respective sector's intensity pathway ³ (see back-up slides for more details)	One example is the Greenhouse Gas Emissions per Value Added method (GEVA) where all companies are required to reduce their emission intensity by 7% per year (compounded), irrespective of initial emissions performance		
Absolute emissions pathway, tCO2e - Company A Company B Company C	Physical intensity pathway, tCO2e/ production output Company x Sector	Economic intensity pathway, tCO2e/\$ added value - Company A Company B Company C		
2020 25 30 35 40 45 2050	2020 25 30 35 40 45 2050	2020 25 30 35 40 45 2050		

- 1. Or per capita, per sqm, etc.
- 2. Economic intensity target-setting methods are considered less robust than absolute and physical intensity methods and more suited to fast-growing companies
- 3. Sectors with SDA pathways available as of Nov. 2020: Power Generation, Iron & Steel, Aluminium, Cement, Pulp & Paper, Services/commercial buildings, Passenger & Freight Transport

Next steps -Operationalize Net Zero strategy

1. Initiating execution & implementation toolkit Develop implementation infrastructure to ensure rigorous execution (e.g., clear accountabilities over time, centralized data repository, rapid escalation)

Regular cadence to track initiative implementation, including progress against KPIs and impact realization

2. Capability building and change management

- Embed new competencies to drive existing initiatives and/or generate new ideas
- Execute internal communication efforts, ESG townhall for employees, live dashboards, etc.

3. Mapping the road ahead

 Execute external communication and collaboration efforts, including e.g., Participation is ESG thinktanks and forums, publishing ESG/Sustainability reports, newsletters and executing joint projects

Focus of Session 5

Focus of Session 4

Focus of Session 3